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The diffusion-limited trapping reaction kinetics of the growth of the depletion zone within and around a
“slit-shaped” trap in a flat microchannel was studied experimentally and numerically. In the experiment, an
ellipse-shaped laser beam acted as a slit trap in a long, flat capillary, and the trapping reaction is photobleach-
ing of fluorescein dye. The parameter studied was the � distance, i.e., the distance from the trap to the point
where the reactant concentration has been locally depleted to the specific survival fraction ��� of its initial bulk
value. When the trap is perfect, then, due to the geometry of the trap and the reactor, as many as three time
regimes can be found, with up to two crossover transitions. The number of crossovers is determined by the
relative sizes of the trap and the microreactor. In the case of two crossovers, we show that the first crossover
relates to the length of the trap, while the second crossover relates to the width of the reactor. When the slit trap
is imperfect and its width cannot be neglected, as is the case in the experiments, a nontrivial early behavior is
observed, followed by two regions in time, separated by a single crossover only.
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I. INTRODUCTION

During the past two decades, diffusion-limited reaction
kinetics have drawn much attention, as it has been
noticed that the conventional kinetics laws do not apply to
diffusion-limited reactions in low-dimensional �less than
three-dimensional �3D�� environments �1–4�. A low dimen-
sionality of a reactor hinders the effective diffusional �and/or
convectional� mixing of the reactants, and this inefficiency
results in the formation of reactant domains, where one re-
actant species is dominant in one local domain while another
reactant is dominant in another local domain. Additionally,
different space restrictions in different directions give rise to
various dimensional crossovers �5–7�. The end effect is to
slow down the overall reaction rate, albeit in a complicated
way.

Among several reaction models, the trapping reaction
A+T→T is one that draws much interest, due to its simplic-
ity and wide application to a variety of problems �4�. For
example, the kinetics of the trapped particles is an analogue
of the case of ions around an electrode, which has been ex-
tensively studied during the 1960s �8–12�. In a typical
model, T is a static trap and A is a diffusing species which is
annihilated, with a certain probability, upon its collision with
the trap. A dynamic “self-segregation” zone �a depletion
zone� forms around the trap where the diffusive reactants A
are depleted. The kinetics of this depletion zone in lower
dimensions is different from the kinetics in a 3D environ-
ment. This can be experimentally studied by reactors of dif-
ferent shapes which reflect different dimensionalities.

Prior to this work, we explored the growth of a depletion
zone in several environments: a line trap in a two-
dimensional �2D� reactor �giving an effective one dimen-

sional �1D� behavior� �13�, a point trap in a 2D reactor
�14,15�, and a point trap in a flat capillary �16�. The present
work is an extension to the latter, in order to further explore
the ramifications from the sensitivity of the diffusion-limited
reaction kinetics to the geometry of the reactor and the trap.
As in our previous studies, we follow the quantity called the
� distance, r�, defined as the distance from the trap to the
point where the local concentration is a fraction, �, of the
bulk concentration. We discuss how r� scales with time, not-
ing that this parameter is easier to obtain experimentally than
other quantities, such as, e.g., the so-called nearest-neighbor
distance �17,18�, which has to do with the discrete nature of
the particles. Formally, r� is defined as

c�r�,t� = �c0, �1�

where c�r , t� is the concentration of A particles at distance r
at time t, starting from an initial concentration c0 at time
t=0.

In 1D systems, the � distance has been found to increase
as t1/2 asymptotically by experiments and theory �13�. This
result can be understood in terms of the simple Einstein dif-
fusion. In 2D, however, it is observed that the � distance
increases nonuniversally, scaling as t�/2 in the long-time
limit, i.e., its time behavior depends on the arbitrary fraction
� �14,15,19–21�. The slower growth of the depletion zone in
the 2D systems, compared with the 1D systems, is explained
as being due to the more effective mixing in 2D systems. In
3D systems the depletion zone does not grow at all, as the
diffusional mixing is most effective.

In this paper, a flat, rectangular capillary is used with a
laser beam forming a slit �instead of a point� shape therein. A
schematic figure of the system is shown in Fig. 1. This sys-
tem differs from the previous 1D system �a line trap in a 2D
lattice �13�� in that the reactor is narrower and also bounded,
and the line trap does not span over the entire width of the
reactor. As expected from previous studies using a capillary*Authors to whom correspondence should be addressed.
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system �16�, one can again observe dimensional crossover
transitions. However, in the present system, two crossover
transitions are expected, the first from a 1D behavior to a 2D
behavior, when the depletion zone expands from the center
of the trap to the ends of the trap, and the second is back
from a 2D behavior to a 1D behavior, as the depletion zone
expands beyond the ends of the trap and reaches the inner
boundary of the reactor. These crossovers are nontrivial, as
they reflect the change of the depletion zone kinetics from
universal to nonuniversal behavior and back. We show that
this is indeed the case for a perfect trap. The effects of the
slit shape, i.e., the finite length of the trap, are significant
only at very early times, but insignificant at longer times,
where the behavior is the same as for a point trap. Similarly,
our results show that the effects of the finite size of the
reactor are significant only at longer times, but insignificant
at earlier times. However, for the case of an imperfect trap,
as is the case in the experiments, we obtain a nontrivial be-
havior at early times, followed by two time regions �2D, 1D�
with a single crossover in between. This is similar to the
results for a point trap in a flat microchannel �16�.

II. MICROCHANNEL EXPERIMENTS

A. Experiment

The experiment is the photobleaching reaction of fluores-
cein dye molecules in an aqueous solution by a focused laser
beam. The reactor is a flat, rectangular capillary and its di-
mensions are 50 mm�1 mm�0.1 mm. Figure 1 shows a
schematic graph of the reactor and the trap we used. An
aqueous solution of fluorescein �concentration 3.6�10−5 M�
was injected into the reactor and the openings of the reactor
were sealed using epoxy after the injection.

Two kinds of light sources are used in the experiments: a
laser beam as the source of the trap and another beam as a
probe. A blue laser light �488 nm� from an argon ion laser
was expanded to an approximately 2.5 cm diameter, using
two biconvex lenses and then focused to a line shape by a
cylindrical lens �f =15 cm�. The power of the laser beam is
about 10 mW. The probe beam was from a xenon lamp
coupled with a 480 nm bandpass filter. The laser beam
comes to the top of the reaction chamber and the probe beam
to the bottom. The shape of the laser beam on the capillary is
an ellipse and the lengths of the major and minor axes are
0.39 mm and 0.15 mm, respectively. Since the minor axis is
much smaller than the major one, we regard the shape as a
slit. The laser beam from above the capillary was introduced
in such a way that it lies perpendicular to the longer bound-
ary of the capillary and the two ends of the major axis of the

ellipse have the same distance to the two longer boundaries
of the capillary, as schematically shown in Fig. 1.

We collected the fluorescence images by using a CCD
camera �Roper Scientific, Photometrics Coolsnap ES�
equipped with a macro lens �Nikon, AF Macro 60 mm f2.8,
1:1�. The size of a typical image is 4.5�3.3 mm2, or 695
�518 pixels, with 14-bit intensity resolution. The resolution
of a pixel is about 6.5 �m, so that the slit trap axes are 60
and 23 pixels. The dye molecule becomes invisible to the
detector when photobleached, resulting in the intensity drop
in the fluorescence image. The progress of the photobleach-
ing was monitored up to 1900 s in the typical experiment.
The entire experiment is performed at room temperature. A
similar experimental setup has been used recently to study
similar trapping reactions �13–16�.

B. Results and discussion

Figure 2 shows the fluorescence image before the trapping
reaction starts �t=0� and several selected fluorescence im-
ages after the trapping reaction starts, at t=1, 11, and 160 s,
illustrating the progress of the photobleaching reaction. The
bright vertical bands in the middle of the images represent
the flat rectangular capillary, or the reaction channel. The
dark region within the reactor, growing with time, is the
depletion zone produced by the photobleaching reaction. No
evidence for convection was seen. The depletion zone re-
sembles the trap shape at t=1 s in Fig. 2. Unlike the deple-
tion zone around a point trap in pure 2D, the depletion zone
created by a slit trap is obviously not radially symmetrical.
The concentration profiles along the pixel line that is parallel
with the reaction channel and crosses the center of the slit
trap are the simplest ones. They are denoted as C�, as in the

FIG. 1. Schematic graph of the experimental setup. A line-
shaped trap is located in a rectangular shape reactor.

FIG. 2. The fluorescence image before the photobleaching reac-
tion begins and selected fluorescence images �t=1, 11, and 160 s�
after the photobleaching reaction starts.
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work on the point trap in a slab geometry �16�.
Figure 3 shows the time evolution of these profiles. The

time range is from t=1 to 1900 s. Before the depletion zone
reaches a certain location, the concentration at that location
is the bulk concentration. When the relative concentration at
the boundary is less than the initial bulk concentration, it
means that the depletion zone has reached the boundary, as is
the case, e.g., in Fig. 2�d�, which is the fluorescence image at
t=160 s.

Each � distance at a given time is measured from the
corresponding concentration profile and presented in Fig.
4�a� as a function of time. The solid line in the figure has a
slope of 1 /2, corresponding to the theoretical t1/2 behavior in
1D, and the dotted lines have slopes of � /2, corresponding to
the theoretical t�/2 in 2D. It can be seen that the � distance
approaches a t1/2 slope asymptotically, as is reconfirmed in
Fig. 4�b�, where we show that r� / t1/2 tends to a constant
asymptotically. The somewhat higher slope for �=0.8,0.9
resembles a similar behavior found for a point trap inside a
microchannel �16�. It should eventually converge to the
asymptotic 1 /2 slope, as is indicated by the pattern of the
curves for these values of � in Fig. 4�b�, which resembles the
convergence trend for �=0.7 in this figure.

Prior to the asymptotic behavior, the � distances scale
differently for different � values, i.e., as t�/2. This is as ex-
pected: before the rectangular reactor constraint �the reactor
shape� is fully “recognized” by the depletion zone, the �
distance scales as if the system was in an unbounded 2D
plane. After the rectangular reactor constraint is fully “rec-
ognized,” the � distance scales with a 1D behavior.

We also notice that before the � distance displays a 2D
behavior, one may expect a period when the � distance is
showing a 1D behavior, but we do not see it here from our
experimental results. Rather, we see an early time behavior
with a growth faster than the 1D behavior for small �, and a
growth slower than 1D for large �. Based on previous work
�13–16�, we suspect that this is due to the imperfectness of
the trap in our experiments. The early time behavior resulting
from the imperfect trapping prevents one from observing the

first 1D regime experimentally. Thus, we simulate an imper-
fect trap �as well as a perfect trap� using the exact enumera-
tion method.

III. NUMERICAL CALCULATIONS

A. The exact enumeration method

Exact enumeration �EE� calculations are performed on a
sufficiently long rectangular lattice of width W, with a slit
trap of length L. The trap width �parallel to the long dimen-
sion of the capillary� is either a single lattice unit or more.
The trap lies in the middle of the lattice and is perpendicular
to the long edges of the rectangular lattice �see Fig. 1 for a
schematic�. The EE method is a discretisation of the diffu-
sion equation for the concentration �22�. The initial bulk con-
centration is 0.25, including inside the trap. At each time
step, the concentration at one site is equally divided and
distributed to its four neighbors and, at the same time, the
site accepts the concentration flow from all of its four neigh-

FIG. 3. Experimental data of the concentration profile at differ-
ent times. The laser power is 10 mW, which is considered as an
imperfect trap. The times are 2, 5, 14, 25, 50, 130, 260, 500, 980,
1900 s �top to bottom�.

FIG. 4. �a� The � distance plots �pixels� vs time �seconds� at
different �’s for the experimental data of Fig. 3. �b� The data of �a�,
where the � distance is divided by t1/2. The asymptotic tendency to
a constant confirms the 1D behavior of the third regime.
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bors, each contributing 1/4 of the concentration at the pre-
vious time step. Before the depletion zone reaches a site, the
concentration at this site is the bulk concentration. The
boundary condition is reflective at the long edges of the rect-
angular lattice and cyclic at the short ones.

At the trapping zone, we assign a trapping probability
�strength� p between 0 �no trapping� and 1 �perfect trap� to
each trapping site. Traps with trapping probability greater
than 0 but less than 1 are called imperfect traps. At every
time step, a portion p of the flux entering the trapping zone is
eliminated, while the remaining 1− p is “reflected” back-
wards into the bulk.

We note that we have also performed Monte Carlo simu-
lations and the results were essentially the same.

B. Results and discussion

Imperfect trap

The imperfect trap corresponds to the experimental sys-
tem in the sense that the laser power is finite. We have dis-
cussed in �14� how one can estimate the relative trapping
efficiency from the laser power output. Figure 5�a� shows the
results for an imperfect trap with trapping probability 0.5.
The width of the reactor �W� is 11 lattice units and the length
of the trap �L� is 5 lattice units. In order to mimic the slit trap
in the experiment, the trap has a width of 3 lattice units, so it
is actually a rectangular rather than an ideal slit. In Fig. 5�a�
the � distance shows the behavior of 2D and 1D at interme-
diate and long times, respectively. At early times, the � dis-
tance does not show the 1D behavior, which is expected for
the perfect trap case, but rather rises either faster than t1/2 for
small �, or slower than t1/2 for large �, similar to the experi-
mental results. This supports the contention that the trap in
our experiment is not a perfect trap.

Figure 5�b� shows r� / t1/2 vs time for the same data as in
Fig. 5�a�. The r� / t1/2 data show a clear tendency to converge
to a constant at long time limit, which supports our earlier
argument that the higher slope for �=0.8 and 0.9 in Fig. 4�b�
should eventually converge to the asymptotic 1 /2 slope.

Perfect trap

Figure 6 shows the � distance vs time for an ideal perfect
slit trap �trapping probability � 1� from EE calculations. The
width of the reactor �W� is 25 lattice units and the length of
the trap �L� is 5 lattice units. Its width is a single lattice unit.
We added several short lines to be able to identify slopes of
1 /2 �solid lines� and slopes � /2 �dotted lines�. We observe
both the 2D and 1D behavior in the figure. Take �=0.8 as an
example: At the earliest times, the � distance scales as t1/2, a
1D behavior, then it scales as t�/2 between 10 and 200 time
steps, and finally it crosses over to t1/2 after t=200 time
steps. If we follow our reasoning, at the very beginning the
depletion zone has yet to “escape” from the effect of the
symmetry of the trap, which acts as a quasi-1D system, as
the line trap does in a 2D lattice �13�.

As expected, there exist three distinct time regimes in the
perfect slit trap system embedded inside a slab geometry. In
the first regime, when the concentration along the middle

line across the trap has not yet been affected by the finite size
of the trap, the � distance scales as t1/2 as in 1D. In the
second regime, when the effect of the finiteness of the trap
on the concentration along the middle line has started but the
finiteness of the reactor has not yet affected the concentration
along the middle line, the � distance scales as t�/2, as in 2D;
finally, in the third regime, when the finiteness of the reactor
takes effect, the � distance scales as t1/2 again. This three-
regime behavior is due to both the shape of the trap and that
of the reactor, and gives rise to two crossover times.

We study the behavior of the first crossover time by fixing
the width of the reactor while changing the length of the trap.
Figure 7�a� shows the � distance vs time at a fixed �=0.6,
where W is fixed at 25 lattice units while L changes from 1 to
25 lattice units. From Fig. 7�a�, we learn that the smaller the
trap is, the earlier the first crossover time occurs. This is
understandable, since, as explained earlier, the crossover

FIG. 5. �a� EE data of � distance vs time �steps� for an imperfect
trap �p=0.5�. The reactor width is W=11 and the slit is L=5 lattice
units in length perpendicular to the microchannel, and 3 lattice units
in width in the parallel direction, in order to mimic the laser beam
finite size. Similar to the experimental data, the three regimes are
obtained: An early-time behavior �faster than t1/2 for small � and
slower than t1/2 behavior for larger ��, then a 2D behavior, and
finally a 1D behavior. �b� r� / t1/2 vs time for the data of �a�. The
r� / t1/2 tends to converge to a constant at the long time limit.
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transition occurs when the finiteness of the trap affects the
concentration of the middle line, and this effect will take
place earlier if the trap is smaller. The two possible limits of
the ratio L /W can be inferred from Fig. 7�a�. If we look at
the data set for the trap length L=1, we recover the limit of
a point trap in a slab, with essentially one crossover from 2D
to 1D �see Ref. �16��. If we look at the L=25 data set
�L=W�, we recover the limit of the line trap which exhibits a
1D behavior with no crossovers at all �13�. We can determine
the first crossover time by using this data set as the baseline.
We compare each data set with it and record the time when
the difference is 5%. We also assume that the crossover time
change between any two discrete data points is linear and we
can pick the time within the range of two points where the
corresponding r� of one point has a difference less than 5%
and the corresponding r� of the other has a difference more
than 5% compared with the baseline. We plot the first cross-
over time vs L in a log-log plot in Fig. 8 �as filled squares�.
It can be seen that, apart from the limit of small L where the
trap shape is actually a point, there is a square dependence of
the first crossover time on the trap length, as is indicated by
the solid line of slope 2.

In order to study the behavior of the second crossover
time, we fix L and change W. Figure 7�b� shows such a plot
where L is fixed at 5 while W varies from 15 to 51. Similar
to the first crossover time, the second crossover time occurs
earlier with a narrower reactor. We take the case of W=51
and L=5 as the baseline and record the time when the dif-
ference is 5%, by picking the time between two points as we
picked the first crossover time. We plot the second crossover
time vs W in a log-log plot in Fig. 8 �as circles�. The slope is
again around 2.

As we explained so far, the appearance of the three re-
gimes is determined by the shape of the trap and the reactor.
The shape of the trap makes the second regime �2D behav-
ior� appear, while the length of the trap determines when it
appears, i.e., the first crossover; the shape of the reactor
makes the third regime �1D behavior at very long time� ap-
pear, while the width of the reactor determines when it ap-

pears, i.e., the second crossover. Although the intermediate
region exhibits a nonuniversal 2D behavior, we assume that
the effects of the shapes of the trap and the reactor are still
controlled by diffusion. This means that we expect Einstein’s
diffusion law, L� t1/2 to be valid, and the crossover time � to
follow an L2 behavior. Our results confirm this conjecture.

In terms of theoretical analysis, the current system in-
volves a combination of two solvable systems: A line trap in
2D free space, and a point trap in a 2D constrained slab
geometry. The first one is known to behave as an effective
1D trap with respect to the kinetics along the parallel direc-
tion �13�. In Ref. �16� we solved analytically the second case.
However, it seems that the current system cannot be solved
analytically, since we have a combination of two spatial pa-
rameters, each imposing difficulties on the exact solution: the
trap length and the reactor width. Moreover, since the trap

FIG. 6. EE data of � distance vs time for a perfect trap
at different �s. Three time regimes can be seen: 1D behavior
�t1/2�, then 2D behavior �t�/2�, and finally 1D behavior �t1/2�.

FIG. 7. EE data of � distance vs time for a perfect trap at
�=0.6. �a� Fixed reactor width �W=25�, and different lengths of
traps. The baseline �W=25,L=25� is at the top and only has 1D
behavior. Other lines deviate from this line at different times, with
smaller traps deviating first. �b� Fixed trap length �L=5� and differ-
ent widths of reactors. The baseline �W=51,L=5� is at the bottom.
Other lines deviate from this line at different times, with smaller
reactors deviating first.
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acts continuously in time, one needs to integrate over
time. This makes things even more complicated and intrac-
table. In any case, the insight gained from the
two basic systems allows us to predict the behavior of the
current system. This must depend on the ratio L /W of the
trap length and the slab width. We claim that this ratio de-
termines the number of crossovers in the kinetic behavior.
When L /W→0, we have an effective point trap and one
crossover �from 2D to 1D� is expected, as in Ref. �16�. When
L /W→1, we have a 2D line trap extending throughout the

reactor. The kinetic behavior along the parallel direction is
1D for all times, with no crossovers at all. When L /W is
equal to some finite number between 0 and 1, then we expect
two crossovers: 1D-2D-1D, as explained in detail above. In
this case, the first crossover depends on the smaller length
scale, L, while the second one depends on the larger length,
W, as can be seen in Figs. 7�a�, 7�b�, and 8.

IV. SUMMARY

We treated the problem of the kinetics of the growth of a
depletion zone around a slit-shaped trap in a channel-shaped
slab geometry, both experimentally and numerically. When
the trap is perfect, there are three time regimes: First, a 1D
behavior before the depletion zone reaches the “end” of the
trap; second, a 2D behavior after the depletion zone passes
the “end” of the trap but does not yet reach the boundary of
the reactor; third, a 1D behavior again, after the depletion
zone well “recognizes” the shape of the reactor. We dis-
cussed the meaning of the two crossover times, in particular
in some limiting cases. When the trap is imperfect, as is the
case in the experiments, the behavior is the same as for the
perfect trap during the second and third regimes but different
in the first regime.
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